

3rd Annual Conference on Systems Engineering Research

March 23-25, 2005 Stevens Institute of Technology Campus Hoboken, New Jersey

Approach to Identify the Defense Elements within a Transport System

Alain Cointet Paris Mass Transport System - RATP

© RATP - AUDIOVISUEL

236477 - 04/09/1998

To face the complexity of a transport system,

A SYSTEMIC APPROACH is essential TO CONTROL the RISKS inherent in the system by taking into account aspects such as:

- Technology, Humans, Organization, Economy,
- Environment (interactions & evolutions),
- The set of life cycles of the whole system as well as of each component, operating modes and interfaces.
- A REPRESENTATION of DEFENSE PROVISIONS (REFERENCE) contributing to the control of risks is indispensable to obtain a clear vision of the SAFETY LEVEL.
 - In coherence with existing approaches,
 - Usable by security experts and decision makers.

APPROACHES

FUNDAMENTALS

Defense instead of **Security** • dynamic & initiative

• global approach & systemic

Depth

- origin of threats
- existence of several lines of

defense

phases of life & environment

2

FINALITY & DEFINITION

Finality :

The "Defense-in-Depth" is a global and dynamic defense, implementing several coordinated lines of defense, against internal and external aggressions, potential or proven - and that on all the life cycle of the transport system

Definition :

► A "Defense-in-Depth System" is the set of the provisions and means organized, contributing to the control of the potential final effects susceptible to be created by all forms of aggressions on sensitive elements (men, system, company and/or environment).

FUNCTIONALITIES OF DEFENSE SYSTEM

Examples:

- To ensure the physical integrity of the train upstream with respect to the kinetic flow of the train downstream ,
- To ensure the physical integrity of operation and maintenance staff with respect to the kinetic flow of the convoy in motion

To guarantee the nominal conditions of adherence of the rail with respect to the deposits of grease left by the track worksites

ACCEPTABILITY OF FINAL EFFECTS

The determination of the final effects levels of acceptability is done in a given system of values, at a given time.

ACCEPTABLE – TOLERATED - UNACCEPTABLE

DREADED EVENT & CONTEXT

RATP

BASES

RATP

ARCHITECTURE & TYPOLOGY

The principles of architecture facilitate the systems design or the modeling of an existing system... DDS

They provide a generic and simple framework for the development of a reference frame of defense...

LINES OF DEFENSE

BASES

Methodology

access to the document

PRINCIPLES OF ACTION

3rd Annual Conference on Systems Engineering Research

Page 12

MEANS OF ACTION

BASES

RATP

SPECIFICATIONS OF DEFENSE SYSTEM

In a given context...,

STEPS

RATP

- To identify the set of defense elements implemented within the system (according to their contexts of use and their contribution to the finality of defense),
- **To identify relations of interdependence between elements of defense**
- □ To precise principles of actions that defense element implements,
 - To precise means performing awaited action of defense element

ANALYZE

Per function of defense and, For a given line of defense ...,

- To establish the recommendations relating to the INSUFFICIENCIES of the elements of defense ,
 - To identify the insufficiencies,
 - To evaluate the corresponding risk,
 - According to acceptability level, to establish the

recommendations

To establish the recommendations relating to the NON RESPECT of the requirements

- To identify the requirements which were not respected,
- To determine the causes of these non-observances,
- To evaluate the corresponding risk,
- According to acceptability level, to establish the recommendations

STEPS

RATI

"Palliative Measures" to be taken for the risk of loss of adherence of the trains, after the realization of work on the tracks.

FINALITY OF DDS: to guarantee the nominal conditions of adherence of the rails

Attacker	Workers and maintenance tools for the track			
Flow	Static mechanic flow (grease)			
Danger	POLLUTION OF RAIL			
Sensitive elements	Trains			
Final effect	Change of the rail characteristics: surface quality and capacity of associated adherence			
Dreaded event	Presence of grease on rails			
Dreaded context	Presence of grease on rails and wheels of train Slip of a train during a braking , Skating of a train to starting			
3rd Annual Conference on Systems Engineering Research Page				

An example

access to the document

_		PREVENTION	PROTECTION	SAFEGUARD
	Trigger	End of work	Report of presence of grease	Report of loss of adherence of a train
	Principle of actions	Action on the emission of flow by the attacker	Action on the sensitivity of the element and on flow	Action by cancellation of flow
	Element of defense	 Checking of the rails at the end of the work Cleaning before any passage of train Control following the passage of two trains 	 Report of presence of grease by any worker (A) Alarm of the chief of regulation (B) Careful walk with all the trains (C) Urgent intervention of the track service (D) 	 (A) Report of loss of adherence (B) Sand spreading
	Dependence	Sequential	Sequential for (A) and (B) Simultaneity of (C) and (D) triggered by (B)	Sequential
	Active means	Worker (rail cleaning)	(A) et (B) workers (C) Train equipment (D) Tools of track service	(A) Train driver (B) Sand

conference on systems engineering research

CONTRIBUTIONS & OUTLINES

Defense in Depth

Architecture

Modeling

- A concept in coherence with the systemic approach and engineering system,
- □ A concept complementary to the existing steps,
- Common representation of the system of defense suggested to the various actors ,
- Synthetic representation of the system of defense suggested to the decision makers

CONTRIBUTIONS & OUTLINES

Method can be applied.....

- **I** To analyze an incident (in complement of the experience feedback),
- To analyze a function system (guidance of the trains, distribution of energy.),
- To analyze an internal or external flow to the system (electric flow.),
- To analyze an association [Attacker, Flow, sensitive element],

To feed the reference frame of defense

But also

- To analyze a plan of crisis
- To analyze a guideline, an instruction, a procedure

To make sure of coherence of enacted measures (Instructions, procedures)

Thanks for your ATTENTION

